Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

David Benito-Garagorri, ${ }^{\text {a }}$ Karl Kirchner $^{\text {a }}$ and Kurt Mereiter ${ }^{\text {b }}$ *

${ }^{\mathrm{a}}$ Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and ${ }^{\text {b }}$ Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria

Correspondence e-mail:
kurt.mereiter@tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.046$
$w R$ factor $=0.124$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetraphenylphosphonium acetonitriletribromoferrate(II)

The title compound, $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]\left[\mathrm{FeBr}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$, contains an anionic tetrahedral iron complex arranged in layers between $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+}$cations. The Fe , one Br , one N and two C atoms have site symmetry m, and the P atom has site symmetry 2 .

Comment

cis- $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{Br}_{2}\right]$, a readily available substance (Hieber \& Bader, 1928; Robertson et al., 2000), reacts with various nucleophiles with the release of CO and the consequent formation of iron complexes that are otherwise difficult to obtain. Using this substance, the title compound, (I), was obtained.

(I)

Compound (I) crystallizes in the uncommon space group Ama2, and contains an $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Br}_{3}\right]^{-}$anion, with the divalent $\mathrm{Fe}^{\mathrm{II}}$ atom (site symmetry m) in a tetrahedral coordination (Fig. 1). The mean $\mathrm{Fe}-\mathrm{Br}$ bond length is 2.404 (3) \AA (Table 1). In general, tetrahedral bond angles around Fe vary considerably, but the data for (I) show the expected trend that $\mathrm{Br}-\mathrm{Fe}-\mathrm{Br}$ angles are large and $\mathrm{Br}-\mathrm{Fe}-\mathrm{N}$ angles small. Only a very few $\left[M\left(\mathrm{CH}_{3} \mathrm{CN}\right) X_{3}\right]^{-}$complexes $(M=$ divalent transition metal and $X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I) have been studied to date by X-ray diffraction analysis. The only other iron compound reported so far contains an $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Cl}_{3}\right]^{-}$ anion and an ($\eta^{4}-2,3$-dimethylbutadiene) tricarbonylcobalt(I) cation (Macgregor et al., 1991). It features a geometry similar to the anion in (I), except that, as expected, the $\mathrm{Fe}-\mathrm{Cl}$ bonds are some $0.15 \AA$ shorter than the $\mathrm{Fe}-\mathrm{Br}$ bonds in (I). Further anions comparable with (I) are $\left[\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{CN}\right) X_{3}\right]^{-}(X=\mathrm{Cl}$ or Br; Yoshioka et al., 2001), $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Cl}_{3}\right]^{-}$(e.g. Cotton et al., 1998; Hartung et al., 1992) and $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Br}_{2} \mathrm{Cl}\right]^{-}$(Rabe \& Müller, 2001), while Pd and Pt complexes of analogous composition have square-planar coordination (e.g. Muir et al., 1986).

The PPh_{4} cation in (I) shows the usual geometric features. As pointed out by Müller (1980), PPh_{4} cations tend to adopt approximate point symmetry $\overline{4}$ in the solid state and to form columns with intracolumnar P...P distances of $7-8 \AA$ and eclipsed juxtaposition of the phenyl rings in order to gain stabilizing $\mathrm{C}-\mathrm{H}-\pi$ interactions. PPh_{4} cations are therefore

Received 20 April 2006
Accepted 20 April 2006

Figure 1
A perspective view of (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms $\mathrm{Fe}, \mathrm{Br} 2, \mathrm{~N}, \mathrm{C} 1$ and C 2 are on a mirror plane. Atom Br 1 A is generated by the symmetry operation $\left(\frac{1}{2}-x, y, z\right)$ and the $\mathrm{C} 11 A$ and $\mathrm{C} 21 A$ rings by $(-x, 1-y, z)$.

Figure 2
A packing diagram for (I), viewed down c.
structure-directing and inclined to form tetragonal lattices. Such PPh_{4} columns are indeed present in (I) along b, but instead of generating a tetragonal lattice, they adopt a layered orthorhombic arrangement which alternates with layers of [$\left.\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Br}_{3}\right]^{-}$anions (Fig. 2). A search of the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002) showed that this architecture combined with space group Ama2 was encountered for three other structures with PPh_{4} cations and anionic complexes similar in shape to $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Br}_{3}\right]^{-}$ (Bernard et al., 2004; Finze et al., 2004).

Experimental

cis- $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{Br}_{2}(1 \mathrm{~g}, 3.05 \mathrm{mmol})$ (Robertson et al., 2000) was suspended in acetonitrile (50 ml) and stirred under a light Ar stream until CO evolution ended. The volume of the solution was reduced under vacuum to 10 ml , after which a solution of $\mathrm{PPh}_{4} \mathrm{Br}(1.3 \mathrm{~g}$, 3.05 mmol) in acetonitrile (20 ml) was added, and the mixture was stirred at room temperature for 10 min . Upon addition of $\mathrm{Et}_{2} \mathrm{O}$
(20 ml), a white solid precipitated, which was collected on a glass frit, washed twice with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum (yield 649 mg , 64%). Colourless crystals of (I) suitable for X-ray diffraction analysis were obtained by allowing $\mathrm{Et}_{2} \mathrm{O}$ to diffuse slowly into a saturated solution of the complex in acetonitrile under Ar.

Crystal data

$\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)\left[\mathrm{FeBr}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\right]$
$Z=4$
$M_{r}=676.00$
Orthorhombic, Ama2
$a=22.3226$ (17) \AA
$b=16.5842$ (13) \AA
$c=7.2972(6) \AA$
$V=2701.4(4) \AA^{3}$

$$
D_{x}=1.662 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=5.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.26 \times 0.23 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\min }=0.25, T_{\max }=0.40$

> 7937 measured reflections
> 2425 independent reflections
> 1946 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.076 P)^{2}\right. \\
& +2.3554 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.67 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1100 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.001 \text { (17) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Fe}-\mathrm{N}$	$2.090(10)$	$\mathrm{Fe}-\mathrm{Br} 2$	$2.4005(17)$
$\mathrm{Fe}-\mathrm{Br} 1$	$2.4058(10)$		
$\mathrm{N}-\mathrm{Fe}-\mathrm{Br} 1$	$103.50(13)$	$\mathrm{Br} 1-\mathrm{Fe}-\mathrm{Br} 1^{\mathrm{i}}$	$116.55(7)$
$\mathrm{N}-\mathrm{Fe}-\mathrm{Br} 2$	$110.3(2)$	$\mathrm{Br} 1-\mathrm{Fe}-\mathrm{Br} 2$	$111.13(4)$

Symmetry code: (i) $-x+\frac{1}{2}, y, z$.
All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 2003); cell refinement: SAINT; data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

Financial support by the FWF Austrian Science Fund (project No. P16600-N11) is gratefully acknowledged. DBG thanks the Basque Government (Eusko Jaurlaritza/Gobierno Vasco) for a doctoral fellowship.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernard, R., Cornu, D., Perrin, M., Scharff, J.-P. \& Miele, P. (2004). J. Organomet. Chem. 689, 2581-2585.
Bruker (2003). SMART (Version 5.625), SAINT (Version 6.36), SADABS (Version 2.10), SHELXTL (Version 6.10) and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Cotton, F. A., Daniels, L. M., Jordan, G. T. IV \& Murillo, C. A. (1998). Polyhedron, 17, 589-597.
Finze, M., Bernhardt, E., Willner, H. \& Lehmann, C. W. (2004). Angew. Chem. Int. Ed. 43, 4160-4163.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hartung, J., Beyer, L., Gutierrez-Puebla, E., Fernandez, V. \& Olk, B. (1992). Z. Naturforsch. Teil B, 47, 183-186.
Hieber, W. \& Bader, G. (1928). Chem. Ber. 61, 1717-1722.
Macgregor, S. A., Yellowlees, L. J. \& Welch, A. J. (1991). Acta Cryst. C47, 536539.

Muir, M. M., Gomez, G. M. \& Muir, J. A. (1986). Acta Cryst. C42, 1699-1701. Müller, U. (1980). Acta Cryst. B36, 1075-1081.
Rabe, S. \& Müller, U. (2001). Z. Anorg. Allg. Chem. 627, 742-746.
Robertson, E. W., Wilkin, O. M. \& Young, N. A. (2000). Polyhedron, 19, 14931502.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yoshioka, K., Kikuchi, H., Mizutani, J. \& Matsumoto, K. (2001). Inorg. Chem. 40, 2234-2239.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

